Knowledge of the anisotropic elastic properties of osteon and osteonal lamellae provides a better understanding of various pathophysiological conditions, such as aging, osteoporosis, osteoarthritis, and other degenerative diseases. For this reason, it is important to investigate and understand the elasticity of cortical bone. We created a bidirectional micromechanical model based on inverse homogenization for predicting the elastic properties of osteon and osteonal lamellae of cortical bone. The shape, the dimensions, and the curvature of osteon and osteonal lamellae are described by appropriately chosen curvilinear coordinate systems, so that the model operates close to the real morphology of these bone components. The model was used to calculate nine orthotropic elastic constants of osteonal lamellae. The input values have the elastic properties of a single osteon. We also expressed the dependence of the elastic properties of the lamellae on the angle of orientation. To validate the model, we performed nanoindentation tests on several osteonal lamellae. We compared the experimental results with the calculated results, and there was good agreement between them. The inverted model was used to calculate the elastic properties of a single osteon, where the input values are the elastic constants of osteonal lamellae. These calculations reveal that the model can be used in both directions of homogenization, i.e., direct homogenization and also inverse homogenization. The model described here can provide either the unknown elastic properties of a single lamella from the known elastic properties at the level of a single osteon, or the unknown elastic properties of a single osteon from the known elastic properties at the level of a single lamella.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4030407DOI Listing

Publication Analysis

Top Keywords

elastic properties
40
osteonal lamellae
24
osteon osteonal
16
properties single
16
single osteon
16
elastic
12
properties
9
osteon
8
bidirectional micromechanical
8
model
8

Similar Publications

Recent studies have attempted to characterize the layer-specific mechanical and microstructural properties of the aortic tissues in either normal or pathological state to understand its structural-mechanical property relationships. However, layer-specific tissue mechanics and compositions of normal and dissected ascending aortas have not been thoroughly compared with a statistical conclusion obtained. Eighteen ascending aortic specimens were harvested from 13 patients with type A aortic dissection and 5 donors without aortic diseases, with each specimen further excised to obtain three tissue samples including an intact wall, an intima-media layer and an adventitia layer.

View Article and Find Full Text PDF

For millennia mud has been utilized to make brick for the construction of both residential as well as architectural purposes. However, concerns regarding their vulnerability to different kinds of hazards due to their weak mechanical properties and durability have emerged. This study addressed the global challenge of developing sustainable and affordable construction materials, particularly in resource-constrained regions.

View Article and Find Full Text PDF

Engineering vaginal film platform for mucoadhesion and sustained drug release for HIV-1 prevention.

J Control Release

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

User adherence contributes to the effectiveness of topical pre-exposure prophylactic products designed to protect against human immunodeficiency virus type 1 (HIV-1) infection. Long-acting approaches that do not require daily or coitally-dependent use could potentially improve user adherence. This study aims to develop a long-acting vaginal film to deliver an integrase inhibitor, MK-2048, for prevention of HIV-1 infection.

View Article and Find Full Text PDF

On the Gaussian modulus of lipid membranes.

Biomech Model Mechanobiol

January 2025

Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX, 77204, USA.

The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare.

View Article and Find Full Text PDF

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!