We report on the synthesis and characterization of multifunctional ionic liquid crystals (melting points below 100 °C) which possess chirality and fluorescent behavior as well as mesomorphic and magnetic properties. In this regard, (1R,2S)-(-)-N-methylephedrine ((-)MeEph), containing a chiral center, is linked with variable alkyl chain lengths (e.g., 14, 16, and 18 carbons) to yield liquid crystalline properties in the cations of these compounds. A complex counteranion consisting of trivalent dysprosium (Dy(3+)) and thiocyanate ligand (SCN(-)) is employed, where Dy(3+) provides fluorescent and magnetic properties. Examination of differential scanning calorimetry (DSC) and hot-stage polarizing optical microscopy (POM) data confirmed liquid crystalline characteristics in these materials. We further report on phase transitions from solid to liquid crystal states, followed by isotropic liquid states with increasing temperature. These compounds exhibited two characteristic emission peaks in acetonitrile solution and the solid state when excited at λex = 366 nm, which are attributed to transitions from (4)F9/2 to (6)H15/2 and (4)F9/2 to (6)H13/2. The emission intensities of these compounds were found to be very sensitive to the phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5b01180 | DOI Listing |
Int J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China.
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.
Antibiotics and heavy metals pose severe risks to human health and ecological environment. Therefore, developing a multifunctional adsorbent to remove these contaminants from wastewater is an urgent need. Herein, novel anionic sulfonic acid groups functionalized magnetic β-cyclodextrin (β-CD) composites (FCD@AA) were synthesized by coating poly(2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS)) on the surface of magnetic β-CD particles (FCD).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!