Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 μM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/β and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518544PMC
http://dx.doi.org/10.1021/acs.jmedchem.5b00197DOI Listing

Publication Analysis

Top Keywords

paralog selectivity
8
selectivity
5
grp94
5
structure-activity relationship
4
relationship purine-scaffold
4
purine-scaffold compound
4
compound series
4
series selectivity
4
selectivity endoplasmic
4
endoplasmic reticulum
4

Similar Publications

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Plant AT-rich protein and zinc-binding protein (PLATZ) family in Dendrobium huoshanense: identification, evolution and expression analysis.

BMC Plant Biol

December 2024

Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.

PLATZ (plant A/T-rich protein and zinc-binding protein) transcription factors are essential for plant growth, development, and responses to abiotic stress. The regulatory role of PLATZ genes in the environmental adaptation of D. huoshanense is inadequately comprehended.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF
Article Synopsis
  • Lysophosphatidic acid acyltransferase (LPAAT) is an important enzyme in phospholipid biosynthesis, converting lysophosphatidic acid to phosphatidic acid, with two types identified in E. coli: EcPlsC and EcYihG.
  • The study established a method to purify both EcPlsC and EcYihG in their active forms, revealing that EcPlsC prefers unsaturated fatty acyl-CoAs at optimal conditions of pH 8.0 and 37 °C, while EcYihG favors saturated acyl-CoAs at pH 7.5 and 30 °C.
  • Mutational analysis using
View Article and Find Full Text PDF

Several peptides interact with phylogenetically unrelated G protein-coupled receptors (GPCRs); similarly, orthologous GPCRs interact with distinct ligands. The neuropeptide Substance P (SP) activates both NK1R and another unrelated primate-specific GPCR, MRGPRX2. Furthermore, MRGPRX 1, a paralog of MRGPRX2, recognizes BAM8-22, which has no evolutionary relatedness to SP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!