Model studies on the dimerization of 1,3-diacetylenes.

J Org Chem

†Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstraße 7, D-45117 Essen, Germany.

Published: May 2015

By means of high-level quantum chemical calculations (B2PLYPD and CCSD(T)), the dimerization of 1,3-diacetylenes was studied and compared to the dimerization of acetylene. We found that substituted 1,3-diacetylenes are more reactive than the corresponding substituted acetylenes having an isolated triple bond. The most reactive centers for a dimerization are always the terminal carbon atoms. The introduction of a test reaction allows the calculation of the relative reactivity of individual carbon centers in phenylacetylene, phenylbutadiyne, and phenylhexatriyne. A comparison shows that the reactivity of the terminal carbon atoms increases with increasing numbers of alkyne units, whereas the reactivity of the internal carbon atoms remains very low independent of the number of alkyne units.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b00461DOI Listing

Publication Analysis

Top Keywords

carbon atoms
12
dimerization 13-diacetylenes
8
terminal carbon
8
alkyne units
8
model studies
4
dimerization
4
studies dimerization
4
13-diacetylenes high-level
4
high-level quantum
4
quantum chemical
4

Similar Publications

Atomically Dispersed Ta-O-Co Sites Capable of Mitigating Side Reaction Occurrence for Stable Lithium-Oxygen Batteries.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.

View Article and Find Full Text PDF

The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.

View Article and Find Full Text PDF

C NMR chemical shifts ((C)) were analysed MO theory, together with the origin, using (C), (C) and (C), where C was selected as the standard for the analysis since (C: C) = 0 ppm. An excellent relationship was observed between (C) and the charges on C for (C, C, C, C and C) and (C, CH , CH and CH). However, such a relationship was not observed for the carbon species other than those above.

View Article and Find Full Text PDF

Metal-free covalent organic frameworks (COFs) have emerged as promising catalysts for the oxygen reduction reaction (ORR) because of their unique structural properties and notable stability. To enhance both catalytic activity and selectivity, a variety of linkers and linkages have been investigated in efforts to precisely engineer COFs. However, the impact of vertex structures within COFs on ORR catalysis remains largely underexplored.

View Article and Find Full Text PDF

2D monolayer electrocatalysts for CO electroreduction.

Nanoscale

January 2025

Institute of Energy Power Innovation, North China Electric Power University, 2 Benigno Road, Beijing 102206, P. R. China.

The electrocatalytic carbon dioxide reduction reaction (CORR) is an attractive method for converting atmospheric CO into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!