Photochemical Bleaching of an Elaborate Artificial Light-Harvesting Antenna.

Chemphyschem

Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES), Laboratoire de Chimie Moléculaire et Spectroscopies Avancées (LCOSA), UMR 7515 au CNRS, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 02 (France).

Published: June 2015

The target artificial light-harvesting antenna, comprising 21 discrete chromophores arranged in a logical order, undergoes photochemical bleaching when dispersed in a thin plastic film. The lowest-energy component, which has an absorption maximum at 660 nm, bleaches through first-order kinetics at a relatively fast rate. The other components bleach more slowly, in part, because their excited-state lifetimes are rendered relatively short by virtue of fast intramolecular electronic energy transfer to the terminal acceptor. Two of the dyes, these being close to the terminal acceptor but interconnected through a reversible energy-transfer step, bleach by way of an autocatalytic step. Loss of the terminal acceptor, thereby switching off the energy-transfer route, escalates the rate of bleaching of these ancillary dyes. The opposite terminal, formed by a series of eight pyrene-based chromophores, does not bleach to any significant degree. Confirmation of the various bleaching steps is obtained by examination of an antenna lacking the terminal acceptor, where the autocatalytic route does not exist and bleaching is very slow.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201500150DOI Listing

Publication Analysis

Top Keywords

terminal acceptor
16
photochemical bleaching
8
artificial light-harvesting
8
light-harvesting antenna
8
terminal
5
bleaching elaborate
4
elaborate artificial
4
antenna target
4
target artificial
4
antenna comprising
4

Similar Publications

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in siderophore biosynthesis.

J Struct Biol X

June 2025

Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.

Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .

View Article and Find Full Text PDF

Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.

View Article and Find Full Text PDF

Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.

View Article and Find Full Text PDF

Rationale: Microcephaly, epilepsy, and developmental delay (MCSZ) is a rare neurodevelopmental disorder associated with autosomal recessive inheritance of mutations in the polynucleotide kinase 3'-phosphatase (PNKP) gene. Prompt identification and management are essential, as delayed diagnosis or intervention may result in severe complications or mortality. In this case, prenatal screening in the second trimester detected fetal microcephaly with a gradual decline in head circumference, prompting the decision to terminate the pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!