Introduction: The influence of long-term muscle overload on force regulation and electrical properties of motor units (MUs) was investigated in rats.

Methods: Compensatory overload of the medial gastrocnemius was induced by tenotomy of its synergists. Electrophysiological experiments were performed on functionally isolated MUs 3 months after the surgery.

Results: Force-frequency curves for overloaded MUs were shifted rightward compared with control, thus MUs developed the same relative tetanic forces at higher frequencies. Higher force increase was achieved in response to an increase in stimulation frequency in overloaded fast MUs compared with control. The optimal tetanic contraction, characterized by the highest force-time area per pulse, was evoked at higher stimulation frequencies for all overloaded MUs except FF. Only minor adaptive changes in MU action potentials occurred.

Conclusions: Compensatory muscle overload leads to substantial modifications in MU force development mechanisms, which are MU-type-specific and influence whole muscle force regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.24690DOI Listing

Publication Analysis

Top Keywords

force regulation
12
regulation electrical
8
electrical properties
8
properties motor
8
motor units
8
muscle overload
8
overloaded mus
8
compared control
8
mus
6
force
5

Similar Publications

Proteoglycans, key components of non-collagenous proteins in the bone matrix, attract water through their negatively charged glycosaminoglycan chains. Among these proteoglycans, biglycan (Bgn) and decorin (Dcn) are major subtypes, yet their distinct roles in bone remain largely elusive. In this study, we utilized single knockout (KO) mouse models and successfully generated double KO (dKO) models despite challenges with low yield.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Genome-wide identification of the papaya-like cysteine protease family in poplar and determination of the functional role of PeRD19A in conferring salt tolerance.

Int J Biol Macromol

December 2024

Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China. Electronic address:

Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes involved in plant growth and development as well as plant responses to biological and abiotic stresses. However, there is no detailed characterization of PLCPs genes in poplar. In this study, a genome-wide analysis of the poplar PtrPLCPs family revealed 47 PtrPLCPs, which were classified into nine subfamilies according to their phylogeny: RD21, CEP, XCP, XBCP3, SAG12, RD19 (5), ALP, CTB, and the lost THI subgroups.

View Article and Find Full Text PDF

hnRNPLL regulates MYOF alternative splicing and correlates with early metastasis in pancreatic ductal adenocarcinoma.

Cancer Lett

December 2024

Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer known for its high rate of early metastasis, necessitating the discovery of the underlying mechanisms. Herein, we report that heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) expression significantly increases at the invasion forefront in PDAC and is associated with early metastasis and poor prognosis. Our findings revealed that hnRNPLL knockdown resulted in extensive exon skipping (ES) events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!