Enhanced fermentable sugar production from kitchen waste using various pretreatments.

J Environ Manage

Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

Published: June 2015

The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2015.03.045DOI Listing

Publication Analysis

Top Keywords

kitchen waste
28
fermentable sugar
16
combination pretreatment
12
15% hcl
12
hcl glucoamylase
12
sugar production
8
waste
8
pretreatments kitchen
8
pretreatment method
8
absorbance bands
8

Similar Publications

Evaluating grease trap management practices: A case study from Seri Kembangan, Malaysia.

J Environ Manage

January 2025

Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

Sewerage blockages due to oil and grease deposition discharged from food premises remain a persistent issue globally. This study evaluates the degree of compliance of food premises in Seri Kembangan, Selangor, Malaysia with grease trap guideline, and investigates the factors affecting restaurants' compliance performance. Data were collected from 36 restaurants through a questionnaire-based interview consisting of questions about grease trap installation, operation, maintenance and waste disposal, followed by a walkthrough of the kitchen.

View Article and Find Full Text PDF

Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system.

J Environ Manage

December 2024

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.

View Article and Find Full Text PDF

Analysis strategy of contamination source using chemical fingerprint information based on GC-HRMS: A case study of landfill leachate.

Water Res

December 2024

College of Environment, Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.; Suzhou Research Institute, Hohai University, Suzhou 215100, PR China.. Electronic address:

With the increasing prevalence of emerging contaminants (ECs) in the environment, gaining a deeper understanding of the chemical information pertaining to the contamination source is a crucial step toward effective prevention and control of these ECs. This study presents a novel strategy for analyzing the chemical information of contamination sources using gas chromatography-high resolution mass spectrometry (GC-HRMS) and demonstrates it on landfill leachate, a common and representative environmental contamination source. Initially, a non-targeted screening approach using HRMS was used to characterize a total of 5344 organic compounds with identification confidence levels 1 and 2 in 14 landfill leachate samples.

View Article and Find Full Text PDF

Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

December 2024

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Article Synopsis
  • Hydrothermal carbonization (HTC) transforms waste biomass, particularly high nitrogen feedstocks like kitchen garbage and blue-green algae, into valuable resources, but the characteristics of small hydrochar particles remain underexplored.
  • Hydrochar particles show unique properties such as poor porosity, moderate pH, negative charge, and high hydrophobicity, which differ from the original hydrochar and secondary char derived from simpler biomasses.
  • The study identifies complex formation mechanisms through various chemical reactions in the hydrochar microparticles, highlighting their potential as soil fertilizers and decontaminants while emphasizing that effectiveness is influenced by HTC temperature and type of biomass used.
View Article and Find Full Text PDF

Multiple Strategies Enhance 7-Dehydrocholesterol Production from Kitchen Waste by Engineered .

J Agric Food Chem

December 2024

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

7-Dehydrocholesterol (7-DHC) is an important precursor of vitamin D. The microbial synthesis of 7-DHC has attracted substantial attention. In this study, multiple strategies were developed to create a sustainable green route for enhancing 7-DHC yield from kitchen waste by engineered .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!