Ab initio calculations of the ground and excited states of the ZrN molecule including spin-orbit effects.

J Comput Chem

Lebanese International University, Mouseitbeh, Faculty of Arts and Sciences, Physcis Department, P.O. Box: 146404, Beirut, Lebanon.

Published: June 2015

The electronic structures with spin-orbit effects of the zirconium nitride ZrN molecule are investigated by the methods of multireference single and double configuration interaction. The potential energy curves are calculated along with the spectroscopic constants for the lowest-lying 34 spin-orbit states Ω in ZrN. A good agreement is displayed by comparing the calculated spectroscopic constants with those available experimentally. The permanent dipole moments are calculated along with the vibrational energies. New results are obtained in this work for 29 spin-orbit states and their spectroscopic constants calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23921DOI Listing

Publication Analysis

Top Keywords

spectroscopic constants
12
states zrn
8
zrn molecule
8
spin-orbit effects
8
calculated spectroscopic
8
spin-orbit states
8
initio calculations
4
calculations ground
4
ground excited
4
excited states
4

Similar Publications

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.

View Article and Find Full Text PDF

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

Nanoparticles prepared by soy protein isolate (SPI)-oat β-glucan (OG) extrudates (E-SPI-OG) could encapsulate quercetin and improve its bioaccessibility. This study systematically investigated the binding mechanism between E-SPI-OG and quercetin in nanoparticles using multi-spectroscopic techniques. The results revealed that fluorescence quenching via static type occurred during the interaction between E-SPI-OG and quercetin, accompanied by the occurrence of non-radiative energy transfer (binding distance was 2.

View Article and Find Full Text PDF

Organophosphate esters inhibit enzymatic proteolysis through non-covalent interactions.

Environ Int

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!