Electroactive biofilms play essential roles in determining the power output of microbial fuel cells (MFCs). To engineer the electroactive biofilm formation of Shewanella oneidensis MR-1, a model exoelectrogen, we herein heterologously overexpressed a c-di-GMP biosynthesis gene ydeH in S. oneidensis MR-1, constructing a mutant strain in which the expression of ydeH is under the control of IPTG-inducible promoter, and a strain in which ydeH is under the control of a constitutive promoter. Such engineered Shewanella strains had significantly enhanced biofilm formation and bioelectricity generation. The MFCs inoculated with these engineered strains accomplished a maximum power density of 167.6 ± 3.6 mW/m(2) , which was ∼ 2.8 times of that achieved by the wild-type MR-1 (61.0 ± 1.9 mW/m(2) ). In addition, the engineered strains in the bioelectrochemical system at poised potential of 0.2 V vs. saturated calomel electrode (SCE) generated a stable current density of 1100 mA/m(2) , ∼ 3.4 times of that by wild-type MR-1 (320 mA/m(2) ).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25624 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.
There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Natural and Computational Sciences, Wolaita Soddo University, P. Box 138, Wolaita Soddo, Ethiopia.
A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.
View Article and Find Full Text PDFJ Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!