Background: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains.

Results: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection.

Conclusion: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first "whole-genome" comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427978PMC
http://dx.doi.org/10.1186/s12864-015-1512-6DOI Listing

Publication Analysis

Top Keywords

strain 0140j
12
core genome
12
streptococcus uberis
8
intramammary infections
8
reference strain
8
gene gain/loss
8
crisprs prophage
8
genome
6
strains
5
virulence
4

Similar Publications

Genotyping and study of adherence-related genes of Streptococcus uberis isolates from bovine mastitis.

Microb Pathog

May 2019

Departamento Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, X5804ZAB, Argentina. Electronic address:

The aim of this study was to determine the presence, conservation, and distribution of 6 potential adherence genes and their relationship with diverse molecular types in 34 S. uberis isolated from bovine mastitis in Argentina. Pulsed-field gel electrophoresis (PFGE) typing with SmaI was performed.

View Article and Find Full Text PDF

Streptococcus uberis is frequently isolated from the mammary gland of dairy cattle. Infection with some strains can induce mild subclinical inflammation whilst others induce severe inflammation and clinical mastitis. We compared here the inflammatory response of primary cultures of bovine mammary epithelial cells (pbMEC) towards S.

View Article and Find Full Text PDF

Background: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S.

View Article and Find Full Text PDF

Differential protein expression in Streptococcus uberis under planktonic and biofilm growth conditions.

Appl Environ Microbiol

January 2011

Trafford Centre for Medical and Veterinary Education and Research, University of Sussex, Falmer, Brighton, United Kingdom.

The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145).

View Article and Find Full Text PDF

Sortase anchored proteins of Streptococcus uberis play major roles in the pathogenesis of bovine mastitis in dairy cattle.

Vet Res

December 2010

The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, United Kindgom.

Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!