Anthrax toxin is formed from three components: protective antigen (PA), lethal (LF) and edema (EF) factors. PA83 is cleaved by cell surface protease furin to produce a 63-kDa fragment (PA63). PA63 and LF/EF molecules are assembled to anthrax toxin complexes: oligomer PA63 x 7 + LF/EF x 3. Assembly is occurred during of binding with cellular receptor or near surface of target-cell. This toxin complex forms pore and induces receptor-mediated endocytosis. Formed endosome consists extracellular liquid with LF/EF and membrane-associated ferments (H+ and K+/Na+-ATPases) and proteins (receptors and others). H+ concentration is increased into endosome as result of K/Na-ATPase-dependent- activity of H+-ATPase. Difference of potentials (between endosome and intracellular liquid) is increased and LF/EF molecules are moved to pore and bound with PA63-oligomer to PA63 x 7 + LF/EF x 7 and full block pore (ion-selective channel). Endosome is increased in volume and induces increasing of PA63-oligomer pore to.size of effector complex: LF/EF x 7 + PAl7 x 7 = 750 kDa. Effector complex is translocated from endosome to cytosol by means high difference of potentials (H+) and dissociates from PA47 x 7 complex after cleavage of FFD315-sait by intracellular chymotrypsin-like proteases in all 7 molecules PA63. PA47 x 7 complex (strongly fixed in membrane with debris of hydrophobic loops) return into endosome and pore is destroyed. Endosome pH is decreased rapidly and PA47 x 7 complex is destroyed by endosomal/lysosomal proteases. Receptor-mediated endocytosis is ended by endosome recycling in cell-membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1134/s1068162014040098DOI Listing

Publication Analysis

Top Keywords

anthrax toxin
12
pa63 lf/ef
12
pa47 complex
12
lf/ef molecules
8
receptor-mediated endocytosis
8
endosome
8
difference potentials
8
effector complex
8
lf/ef
6
complex
6

Similar Publications

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

Comparing microbiological and molecular diagnostic tools for the surveillance of anthrax.

PLoS Negl Trop Dis

November 2024

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

The diagnosis of anthrax, a zoonotic disease caused by Bacillus anthracis can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as B.

View Article and Find Full Text PDF

Hyaline fibromatosis syndrome is a rare, progressive and fatal autosomal recessive disorder characterised by multiple subcutaneous skin nodules, osteopenia, joint contractures, failure to thrive, diarrhoea and frequent infections. There is diffuse deposition of hyaline material in the skin, gastrointestinal tract, muscle and endocrine glands. The disease is often underdiagnosed since infants affected with the disease pass away early prior to establishing a final diagnosis.

View Article and Find Full Text PDF

causes anthrax through a combination of bacterial infection and toxemia. As a major virulence factor of , anthrax lethal toxin (LT) is a zinc-dependent metalloproteinase, exerting its cytotoxicity through proteolytic cleavage of the mitogen-activated protein kinase kinases, thereby shutting down the MAPK pathways. Anthrax lethal toxin induces host lethality mostly by targeting the cardiovascular system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!