Bioleaching combined with Fenton-like oxidation was used to condition sewage sludge. The results showed that it took approximately 1 d to decrease pH from 6.9 to 2.5 by bioleaching, with fixed sulfur power and FeSO4 x 7H2O dosages of 3 g x L(-1) and 8 g x L(-1), respectively. After bioleaching, the volatile solids(VS) reduction was 13.4%, and the specific resistance to filtration(SRF) dropped from 3.1 x 10(9)s2 x g(-1) to 1.5 x 10(9)s2 x g(-1) with a reduction of 51.6%, but the bioleached sludge was still difficult to be dewatered. The bioleached sludge was further oxidized by Fenton-like oxidation. The results indicated that the optimal H2O2 dosage and reaction time were 3.3 g x L(-1) and 60 min, respectively. Under the optimal conditions, VS reduction was 30.8%, SRF was declined to 1.9 x 10(8) s2 x g(-1) with a reduction of 93.9%, and the moisture of sludge cake was 76.9%. After treated by bioleaching combined with Fenton-like oxidation, the dewaterability and stability of sewage sludge were significantly improved. Besides, the combined technology was more efficient in conditioning sewage sludge than single Fenton-like oxidation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fenton-like oxidation
16
bioleaching combined
12
combined fenton-like
12
sewage sludge
12
109s2 g-1
8
g-1 reduction
8
bioleached sludge
8
sludge
6
bioleaching
5
fenton-like
5

Similar Publications

Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Active surface area determines the activity of biochar in Fenton-like oxidation processes.

J Hazard Mater

January 2025

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Biochar (BC) possesses diverse active sites (e.g., oxygen-containing groups OCGs, defects, and electronegative heteroatom) responsible for the catalytic reactions.

View Article and Find Full Text PDF

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

The role of histidine buffer in the iron-catalyzed formation of oxidizing species in pharmaceutical formulations: Mechanistic studies.

J Pharm Sci

January 2025

Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA. Electronic address:

Iron-catalyzed oxidation reactions are common degradation pathways in pharmaceutical formulations. Buffers can influence oxidation reactions promoted by iron (Fe) and hydrogen peroxide (H₂O₂). However, mechanistically, the specific role of buffers in such reactions is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!