Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silver bismuth oxide(BSO) was prepared by a simple ion exchange-coprecipitation method with AgNO3 and NaBiO, .2H2O as raw materials, and then used to oxidatively degrade tetrabromobisphenol A(TBBPA). Effects of the molar ratio of Ag/Bi during BSO preparation and the BSO dosage on the degradation of TBBPA were investigated. The results showed that under the optimized conditions (i.e., the Ag/Bi molar ratio of 1:1, BSO dosage of 1 g x L(-1), 40 mg x L(-1) of TBBPA was completely degraded and the removal of total organic carbon achieved more than 80% within 7 min. The degradation intermediates of TBBPA were identified by ion chromatography, gas chromatograph-mass spectrometer and X-ray photoelectron spectroscopy. The degradation pathway of TBBPA included the debromination, the cleavage of tert-butyl group and the open epoxidation of benzene ring. Based on a quenching study of NaN3, singlet oxygen was proved to play a dominant role in the TBBPA degradation.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!