In order to understand the environmental behavior of the organic pollutants Dibutyl-phthalate (DBP) in fluctuating zone soil, the migration and release processes of DBP in the fluctuating zone of the Three Gorges Reservoir to the overlying water and the impacts of temperature, light, coexistence phthalate-bis (2-ethylhexyl)-ester (DEHP), microbial activity on the process were studied using static flooding method. The results showed that DBP migrated from the soil to the overlying water in the early days after flooding, and the release process of DBP was divided into two phases: one was the quick release with a relatively short releasing time and a rapid releasing rate; the other was the slow release with a relatively long releasing time and a slow releasing rate. The slow release was a major speed control step, which could be well fitted by two-compartment first-order kinetics. In the interim (12 d) after flooding, the capacity of release reached a maximum, the DBP released from the soil into the water migrated from the water to the soil again after continued flooding, and eventually the content of DBP in soil and water reached equilibrium in the later period after flooding. The intensity of DBP releasing into the overlying water and the rapid releasing rate increased, while the slow releasing rate decreased when the temperature increased. The concentrations of DBP released into the water were different with different light sources. The concentration of DBP in the overlying water with treatment of natural light was higher than those with treatment of ultraviolet light UVB, UVA. After the amount of DBP in the overlying water reached the maximum, the content of DBP in the overlying water decreased relatively faster under the ultraviolet light than under the natural light. The largest release content of DBP and the time reached the largest release content were different with different oxygen content in the overlying water. Overall, the higher oxygen content in the overlying water, the higher content of DBP in the overlying water. The time when the concentration of DBP in overlying water reached the maximum was on the 8th day after flooding in the high oxygen and low oxygen studies, while the time was on the 12th day in natural study. When the phthalate-bis (2-ethylhexyl)-ester(DEHP) co-existed in the soil, there would be some significant influence on the release of DBP. After DEHP addition in the soil, it could release more DBP than the control, and both the rapid releasing rate and slow releasing rate were bigger than those of the control. The microbial activity had some impacts on the process. However, the effect was not obvious. After adding microbial activity inhibitor, the content of migrated DBP was slightly lower than that of the control.

Download full-text PDF

Source

Publication Analysis

Top Keywords

overlying water
40
releasing rate
24
dbp overlying
20
dbp
17
content dbp
16
water
14
fluctuating zone
12
microbial activity
12
rapid releasing
12
rate slow
12

Similar Publications

Immobilization of phosphorus (P) migrated from sediment increasing algal-available P pool in P-inactivating material.

Chemosphere

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

Use of phosphorus (P)-inactivating material to immobilize P released from sediment, typically under anoxic condition, is a method often considered to reduce lake internal P loading for eutrophication control. This study found that immobilizing the released P from sediment induced accumulation of algal-available P (NaHCO and Fe oxide paper strip extractable P) in P-inactivating material which was even higher than those in raw sediment at initial stage (by 29.7% and 85.

View Article and Find Full Text PDF

Preparation and performance evaluation of an efficient microbial dust suppressant for dust control in disturbed areas of blast piles in open-pit coal mines.

J Environ Manage

December 2024

Zhunneng Group Co., Ltd., China Energy Investment Corporation, Ordos, Inner Mongolia, 010300, China.

Open-pit coal mining creates large rock piles as a result of removing overlying strata. When disturbed by loading operations and wind, these rock piles release considerable dust, leading to significant environmental pollution. This study aims to develop an environmentally friendly and cost-effective method for dust control in disturbed areas of open-pit coal mines, using Sporosarcina pasteurii as a microbial dust suppressant to explore its potential application and development.

View Article and Find Full Text PDF

Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient remineralization capacities. Yet, these benthic fauna are expected to be profoundly affected by current observed rising sea temperatures.

View Article and Find Full Text PDF

Microbial community and functional shifts across agricultural and urban landscapes within a Lake Erie watershed.

J Environ Manage

December 2024

Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada. Electronic address:

The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes.

View Article and Find Full Text PDF

Dissolved organic carbon can alter coastal sediment phosphorus dynamic: effects of different carbon forms and concentrations.

Chemosphere

December 2024

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China; Department of Ecoscience and WATEC, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey. Electronic address:

Coastal waters are receiving increasing loads of dissolved organic carbon (DOC), differing in structural complexity and molecular weights with potential different effects on the phosphorus (P) dynamics in these waters. This study conducted an in-situ investigation in Xiangshan Harbor, China, to explore the patterns of P release in response to DOC inputs. To further elucidate the underlying mechanisms behind the DOC-affected sediment P release, a two-month mesocosm experiment was undertaken with coastal sediment (Xiangshan Harbor) to which acetate, glucose, and humic acid (representing the fermentation product, the simple available carbon, and the refractory humic-like carbon sources, respectively) were separately added to the overlying water at dosages of 0, 5, 10, and 20 mg C L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!