The paper described a new mutation that causes the development of multiple meristematic foci as part of shoot apical meristem, which can give rise to new stem axes or cause stem fasciation. The wus-1 mutation represses development of additional apical meristem in fas5 mutant, indicating to the sequential action of the genes in the formation of the shoot apical meristem and FAS5 gene participation in spatial restriction of the WUS gene expression. This function gene FAS5 performs independently of other negative regulators of WUS gene--namely genes CLV, as demonstrated by additive phenotype of double mutants fas5 clv2-1 and fas5 clv3-2. Besides the effect on the development of the shoot apical meristem fas5 mutation causes a change in the shape and number of leaves, accelerates the plant transition to the reproductive stage and leads to the development of cell neoplasms on the stem (buds, stigmatic tissues and ovule-like structures). The mutation also causes changes in apical meristems and leaf cell morphology indicating the activation in cells of DNA endoreduplication. Pleiotropic effect of the fas5 mutation on different stages of ontogeny and different organs suggests that the FAS5 gene plays a complex regulatory role at all stages of the A. thaliana shoot development, and affects many direct or indirect target genes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

apical meristem
16
fas5 mutation
12
shoot apical
12
meristem fas5
12
shoot development
8
fas5
8
fas5 gene
8
mutation
6
development
6
shoot
5

Similar Publications

The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.

View Article and Find Full Text PDF
Article Synopsis
  • White clover is susceptible to drought stress, and recent research identified the NAC transcription factor TrNAC002, which plays a key role in regulating plant responses to this stress.
  • Overexpression of TrNAC002 leads to enhanced leaf size, increased lateral root growth, and higher expression of genes related to vegetative growth, allowing plants to better withstand drought conditions.
  • The study shows that modified plants have lower reactive oxygen species levels and higher flavonoid content, which correlates with improved survival under drought conditions compared to wild-type plants.
View Article and Find Full Text PDF

Genetic diversity within a tree and alternative indexes for different evolutionary effects.

Quant Plant Biol

December 2024

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.

View Article and Find Full Text PDF

This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection.

View Article and Find Full Text PDF

Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.

Biology (Basel)

December 2024

Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.

The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!