Two Zn-based metal organic frameworks have been prepared solvothermally, and their selectivity for CO2 adsorption was investigated. In both frameworks, the inorganic structural building unit is composed of Zn(II) bridged by the 2-carboxylate or 5-carboxylate pendants of 2,5-pyridine dicarboxylate (pydc) to form a 1D zigzag chain. The zigzag chains are linked by the bridging 2,5-carboxylates across the Zn ions to form 3D networks with formulas of Zn4(pydc)4(DMF)2·3DMF (1) and Zn2(pydc)2(DEF) (2). The framework (1) contains coordinated DMF as well as DMF solvates (DMF = N,N-dimethylformamide), while (2) contains coordinated DEF (DEF = N,N-diethylformamide). (1) displays a reversible type-I sorption isotherm for CO2 and N2 with BET surface areas of 196 and 319 m(2)/g, respectively. At low pressures, CO2 and N2 isotherms for (2) were not able to reach saturation, indicative of pore sizes too small for the gas molecules to penetrate. A solvent exchange to give (2)-MeOH allowed for increased CO2 and N2 adsorption onto the MOF surface with BET surface areas of 41 and 39 m(2)/g, respectively. The binding of CO2 into the framework of (1) was found to be exothermic with a zero coverage heat of adsorption, Qst(0), of −27.7 kJ/mol. The Qst(0) of (2) and (2)-MeOH were found to be −3 and −41 kJ/mol, respectively. The CO2/N2 selectivity for (1), calculated from the estimated KH at 296 K, was found to be 42. At pressures relevant to postcombustion capture, the selectivity was 14. The thermodynamic data are consistent with a mechanism of adsorption that involves CO2 binding to the unsaturated Zn(II) metal centers present in the crystal structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic503047yDOI Listing

Publication Analysis

Top Keywords

co2 adsorption
8
bet surface
8
surface areas
8
co2
7
thermodynamic study
4
study co2
4
co2 sorption
4
sorption polymorphic
4
polymorphic microporous
4
microporous mofs
4

Similar Publications

This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.

View Article and Find Full Text PDF

This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO adsorption/desorption process to capture the CO from flue gases along with its subsequent reuse in greenhouse CO enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.

View Article and Find Full Text PDF

Behavior, mechanisms, and applications of low-concentration CO in energy media.

Chem Soc Rev

January 2025

Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.

This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!