Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405374PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122942PLOS

Publication Analysis

Top Keywords

rta 408
32
tumor cell
16
cell growth
16
rta
8
408 novel
8
inhibit tumor
8
growth metastasis
8
gene expression
8
408 inhibited
8
0
7

Similar Publications

Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, California; Department of Basic Sciences, California Northstate University, Elk Grove, California. Electronic address:

Background: Friedreich ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood.

Objective: This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Background: Muscle atrophy caused by denervation is common in neuromuscular diseases, leading to loss of muscle mass and function. However, a comprehensive understanding of the overall molecular network changes during muscle denervation atrophy is still deficient, hindering the development of effective treatments.

Method: In this study, a sciatic nerve transection model was employed in male C57BL/6 J mice to induce muscle denervation atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!