Idiopathic pulmonary fibrosis is a progressive fibrosing disorder for which there is no cure and no pharmacological treatment capable of increasing in a meaningful way the survival rate. Lung transplantation remains the only possible treatment for patients with advanced disease, although the increase in 5-year survival is only 45 %. Some preclinical studies have generated promising results about the therapeutic potential of exogenous stem cells. However, two initial clinical trials involving the endobronchial or systemic delivery of autologous adipose tissue-derived or unrelated-donor, placenta-derived mesenchymal stem cells have not convincingly demonstrated that these treatments are acceptably safe. The results of other ongoing clinical trials may help to identify the best source and delivery route of mesenchymal stem cells and to estimate the risk of unwanted effects related to the mesenchymal nature of the transplanted cells. Considering that most of the therapeutic potential of these cells has been ascribed to paracrine signaling, the use of mesenchymal stem cell-derived secretome as an alternative to the transplantation of single cell suspension may circumvent many regulatory and clinical problems. Technical and safety concerns still limit the possibility of clinical applications of other promising interventions that are based on the use of human amnion stem cells, embryonic stem cells or induced pluripotent stem cells to replace or regenerate the dysfunctional alveolar epithelium. We summarize the current status of the field and identify major challenges and opportunities for the possible future integration of stem cell-based treatments into the currently recommended clinical management strategy for idiopathic pulmonary fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-015-9587-7DOI Listing

Publication Analysis

Top Keywords

stem cells
24
idiopathic pulmonary
12
pulmonary fibrosis
12
mesenchymal stem
12
stem
9
stem cell-based
8
therapeutic potential
8
cells
8
clinical trials
8
clinical
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!