High levels of hepcidin, the main regulator of systemic iron metabolism, lead to various diseases. Targeting hepcidin and lowering its concentration is a possible form of intervention in order to treat these diseases. High turnover rate of hepcidin is a major drawback of therapies directly targeting this peptide. We developed two monoclonal antibodies ABT-207 and h5F9-AM8 which inhibit hemojuvelin/repulsive guidance molecule C (RGMc) and downregulate hepcidin. We conducted single-application and dose response studies to understand the antibodies' mechanism and subchronic toxicology studies to exclude safety-related concerns. Investigation was carried out at different biological levels through qPCR, Affymetrix, liquid chromatography coupled with mass spectrometry (LC-MS/MS), histopathology, serum iron, unsaturated iron binding capacity (UIBC), and drug concentration measurements. After a single application of these antibodies, hepcidin expression in liver and its serum protein levels were reduced. Serum iron increased for several weeks. The RGMc antibodies show a pronounced dose response relationship in rats with h5F9-AM8 having an IC50 (UIBC) of approximately 80-fold higher than ABT-207. When hepcidin levels were downregulated, iron deposition in the liver was visible histologically 1 week post application. These antibody-mediated iron depositions were not associated with any adverse toxicologically relevant effect at the doses and time points evaluated. Iron depositions seen after 14 weekly treatments with ABT-207 were reversible in rats and in cynomolgus monkeys. Due to their long-lasting effects and excellent safety profile, both RGMc-blocking antibodies ABT-207 and h5F9-AM8 are favorable clinical candidates for diseases characterized by high serum hepcidin levels like anemia of chronic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476998 | PMC |
http://dx.doi.org/10.1208/s12248-015-9770-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!