Background/aims: Adhesion-regulating molecule 1 (ADRM1), a receptor located on the 26S proteasome, is upregulated in many solid cancers. However, little is known about its role in acute leukemia (AL).

Methods: We determined ADRM1 expression levels in both untreated AL samples and leukemia cell lines using real-time polymerase chain reaction or Western blot analysis. Growth curves, colony formation assays, cell cycle and apoptosis analyses, cell migration and invasion assays and NF-κB p65 nuclear translocation assays via Western blotting were used to examine the biological behavior of HL60 cells and the underlying mechanism.

Results: ADRM1 was upregulated in both untreated AL samples and leukemia cell lines. ADRM1 knockdown significantly suppressed HL60 cell proliferation (48.82 ± 12.58%) and colony formation and caused cell cycle arrest in the G0/G1 phase. Furthermore, we confirmed that ADRM1 knockdown suppressed p65 nuclear translocation.

Conclusion: Our study revealed that ADRM1 was overexpressed in AL, especially in CD34+ leukemia stem and progenitor cells. ADRM1 may play a role in AL via the proteasome-ubiquitin pathway by potentially sustaining the activation of NF-κB signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000369916DOI Listing

Publication Analysis

Top Keywords

adhesion-regulating molecule
8
hl60 cells
8
untreated samples
8
samples leukemia
8
leukemia cell
8
cell lines
8
colony formation
8
cell cycle
8
p65 nuclear
8
adrm1 knockdown
8

Similar Publications

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5).

View Article and Find Full Text PDF

Proteome-wide Ligand and Target Discovery by Using Strain-Enabled Cyclopropane Electrophiles.

J Am Chem Soc

July 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.

The evolving use of covalent ligands as chemical probes and therapeutic agents could greatly benefit from an expanded array of cysteine-reactive electrophiles for efficient and versatile proteome profiling. Herein, to expand the current repertoire of cysteine-reactive electrophiles, we developed a new class of strain-enabled electrophiles based on cyclopropanes. Proteome profiling has unveiled that C163 of lactate dehydrogenase A (LDHA) and C88 of adhesion regulating molecule 1 (ADRM1) are ligandable residues to modulate the protein functions.

View Article and Find Full Text PDF

Adhesion-regulating molecule 1 (ADRM1) has been implicated in tumor development, yet its specific role in bladder cancer (BC) remains undefined. This study aimed to elucidate the function of ADRM1 in BC through a combination of bioinformatics analysis and immunohistochemical analysis (IHC). Utilizing R version 3.

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) and endothelial cell apoptosis have been documented to have a role in atherosclerosis (AS) progression. To deepen knowledge in this aspect, our study investigated the effect of LIM homeobox 2 (LHX2) and adhesion-regulating molecule 1 (ADRM1) on EndMT and endothelial cell apoptosis in the oxidized low-density lipoprotein (ox-LDL) -stimulated AS cell model.Ox-LDL was utilized to treat human umbilical vein endothelial cells (HUVECs) for constructing an AS model in vitro, followed by measurement of LHX2 and ADRM1 expressions.

View Article and Find Full Text PDF

ADRM1/RPN13 attenuates cartilage extracellular matrix degradation via enhancing UCH37-mediated ALK5 deubiquitination.

Int J Biol Macromol

August 2023

Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province 330006, China. Electronic address:

Osteoarthritis (OA) is the most common age-related joint disorder with no effective therapy, and its specific pathological mechanism remains to be fully clarified. Adhesion-regulating molecule 1 (ADRM1) has been proven to be involved in OA progression as a favorable gene. However, the exact mechanism of ADRM1 involved in OA were unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!