Angiotensin-(1-7) [Ang-(1-7)] develops its functions interacting with Mas receptor. Mas receptor was recently identified in the DRG and its activation by Ang-(1-7) resulted in peripheral antinociception against PGE2 hyperalgesia in an opioid-independent pathway. Nevertheless, the mechanism by which Ang-(1-7) induce peripheral antinociception was not yet elucidated. Considering that endogenous noradrenaline could induce antinociceptive effects by activation of the adrenoceptors the aim of this study was verify if the Ang-(1-7) is able to induce peripheral antinociception by interacting with the endogenous noradrenergic system. Hyperalgesia was induced by intraplantar injection of prostaglandin E2 (2μg). Ang-(1-7) was administered locally into the right hindpaw alone and after either agents, α2-adrenoceptor antagonist, yohimbine (5, 10 and 20 μg/paw), α2C-adrenoceptor antagonist rauwolscine (10, 15 and 20 μg/paw), α1-adrenoceptor antagonist prazosin (0.5, 1 and 2 μg/paw), β-adrenoceptor antagonist propranolol (150, 300 and 600 ng/paw). Noradrenaline (NA) reuptake inhibitor reboxetine (30 μg/paw) was administered prior to Ang-(1-7) low dose (20 ng) and guanetidine 3 days prior to experiment (30 mg/kg/animal, once a day), depleting NA storage. Intraplantar Ang-(1-7) induced peripheral antinociception against hyperalgesia induced by PGE2. This effect was reversed, in dose dependent manner, by intraplantar injection of yohimbine, rauwolscine, prazosin and propranolol. Reboxetine intensified the antinociceptive effects of low-dose of Ang-(1-7) and guanethidine, which depletes peripheral sympathomimetic amines, reversed almost 70% the Ang-(1-7)-induced peripheral antinociception. Then, this study provides evidence that Ang-(1-7) induce peripheral antinociception stimulating an endogenous noradrenaline release that activates peripheral adrenoceptors inducing antinociception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2015.04.011 | DOI Listing |
Pharmacol Res
January 2025
University Hospital of Jena, Institute of Physiology 1, D-07740 Jena, Germany. Electronic address:
Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico.
Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.
View Article and Find Full Text PDFThe mu-opioid receptor (MOR) is a major target for the treatment of pain. However, opioids are prone to side effects which limit their effectiveness as analgesics and can lead to opioid use disorders or, even, lethal overdose. The systemic administration of opioid agonists makes it both very difficult to decipher their underlying circuit mechanisms of action and to limit drug action to specific receptor subpopulations to isolate therapeutic effects from adverse side effects.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China. Electronic address:
Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!