An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b02347 | DOI Listing |
J Agric Food Chem
March 2025
State Key Laboratory of Agricultural Products Safety/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
Mefentrifluconazole was the first novel isopropyl alcohol triazole fungicide. Existing research indicated that mefentrifluconazole had high activity and low toxicity, presenting potential for monocase application, while limited data existed on its enantioselective dissipation in crops. Here, after confirming the absolute configuration, the enantioselective dissipation and risk assessments of chiral mefentrifluconazole in soybeans, peanuts, tomatoes, grapes, and soil were conducted.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.
View Article and Find Full Text PDFTrends Biotechnol
March 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China. Electronic address:
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P.
View Article and Find Full Text PDFPlant Dis
March 2025
North Minzu University, College of Biological Science and Engineering, Yinchuan, Ningxia, China;
Goji berry (Lycium barbarum L.) is a fruit with high nutritional and medicinal value, widely cultivated in northwest China (Wang et al. 2023).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!