Nowadays, the determination of the experimental chromatographic conditions to be used in Reversed Phase Liquid Ultra-Performance Flash Purification is still challenging. This is due to four different items. In most cases, flash purification stationary phases are not available with geometry of column used in analytical chromatography. The flash purification columns are single-use only. From the point of view of selectivity and retention, few RPLC phases exist with properties of separation identical for analytical and flash purification supports. Characterization methods and databases used for comparing analytical RPLC columns do not include stationary phases for RP flash purification columns. The goal of this work is to develop a new method development strategy which permits the determination of the experimental chromatographic conditions on RP ultra-performance flash purification columns. It relies on the knowledge of any isocratic conditions obtained on any given initial reversed stationary phase. The final conditions to implement on the RP ultra-performance flash purification phase enable either to keep the retention range of a selected solute constant, or to set it around a previously chosen value. The rules of transfer in linear gradient mode are also described. The methodology was valid, whatever the initial RP stationary and mobile phases, for different chemical classes, whatever the bonding, particle diameter, porous or core shell particle, towards different RP alkyl and analogues stationary and mobile phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2015.04.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!