Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1.

Hypertension

From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore.

Published: June 2015

Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1(-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and BP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433423PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04525DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
32
oxidative stress
12
proximal tubule
12
tubule cells
12
dj-1 dopamine
12
dj-1-/- mice
12
nrf2
10
dj-1
9
nuclear factor
8
factor erythroid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!