Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt.

Hypertension

From the Department of Pharmacology (F.J., H.J., A.M.H., J.L.G., C.D.S.), Department of Anatomy and Cell Biology (A.P.T., M.D.C., D.T.R.), and UIHC Center for Hypertension Research (J.L.G., C.D.S.), Roy J. and Lucille Carver College of Medicine, University of Iowa; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).

Published: June 2015

Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline-intake and blood pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433403PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05377DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
44
reticulum stress
32
ccaat homologous
16
homologous binding
16
response doca-salt
12
subfornical organ
12
reticulum
11
saline-intake
11
endoplasmic
10
brain endoplasmic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!