The mechanisms of therapeutic resistance of human glioblastoma multiforme are analyzed. The authors make an attempt at systematization and scientific theoretical validation of new approaches to creation of biomedical cellular preparations, based on the oncoproteomic technologies, for personified therapy of the glial tumors. A new approach to the treatment of glioblastoma multiforme with due consideration for the molecular biological characteristics of the tumor stem cells is suggested. It is shown that the tumor stem cell proteome can be regarded as the main target for cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-015-2864-2DOI Listing

Publication Analysis

Top Keywords

glioblastoma multiforme
12
treatment glioblastoma
8
tumor stem
8
biomolecular approaches
4
approaches treatment
4
multiforme mechanisms
4
mechanisms therapeutic
4
therapeutic resistance
4
resistance human
4
human glioblastoma
4

Similar Publications

Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high expression.

View Article and Find Full Text PDF

HIF-1α Mediated Regulation of Glioblastoma Malignant Phenotypes through CD47 Protein: Understanding Functions and Mechanisms.

J Cancer

January 2025

Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

Glioblastoma (GBM) is a highly invasive and malignant primary intracranial tumor originating from glial cells, and it is associated with an extremely poor clinical prognosis. The hypoxic conditions within GBM promote various tumor cell processes such as angiogenesis, proliferation, migration, invasion, and drug resistance. A key aspect of tumor adaptation to the hypoxic environment and the promotion of malignant behaviors is the regulation of HIF-1α signaling pathways.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!