Glucose uptake into insulin-sensitive tissues is important for the regulation of blood glucose. This study has investigated whether the pentacyclic triterpenoids substituted with a carboxylic acid at the C-27 position isolated from Astilbe rivularis can enhance glucose uptake and subsequently to also examine their underlying molecular mechanisms. The structure of the new pentacyclic triterpenoid 1 was assigned by spectroscopic data interpretation. To evaluate the activity of compounds 1 and 2, glucose uptake and glucose transporter 4 (GLUT4) translocation were measured in C2C12 myotubes. The C-27-carboxylated triterpenoids 1 and 2 significantly increased basal and insulin-stimulated glucose uptake and GLUT4 translocation to plasma membrane. Both compounds stimulated the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt), and extracellular signal-regulated kinase 1/2 (Erk1/2). Pretreatment with the Akt inhibitor triciribine or the Erk1/2 inhibitor U0126 decreased the ability of both compounds to enhance basal- and insulin-stimulated glucose uptake and stimulate GLUT4 translocation. These results indicate that compounds 1 and 2 activated both the IRS-1/Akt and Erk1/2 pathways and subsequently stimulated GLUT4 translocation, leading to enhanced glucose uptake. Thus, these observations suggest that C-27-carboxylated-pentacyclic triterpenoids may serve as scaffolds for development as agents for the management of blood glucose levels in disease states such as diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np5009174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!