The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b00754DOI Listing

Publication Analysis

Top Keywords

reduction diazonium
8
diazonium salts
8
alkyl iodides
8
partial perfluoroalkyl
8
perfluoroalkyl alkyl
8
alkyl radicals
8
electrochemical reaction
8
aryl alkyl
8
alkyl
5
one-step formation
4

Similar Publications

Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Nonelectroactive Compounds Based on Surface Supramolecular Interactions on Chevron-like Graphene Nanoribbons Modified through Click Chemistry.

ACS Omega

September 2024

Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain.

In this study, we have developed a nanostructured electrochemical sensor based on modified graphene nanoribbons tailored for the analysis of nonelectroactive compounds via a surface competitive assay. Stigmasterol, a nonelectroactive phytosterol, was selected as a representative case. Chevron-like graphene nanoribbons, chemically synthesized, were immobilized onto glassy carbon electrodes and covalently functionalized to allow the on-surface formation of a supramolecular complex.

View Article and Find Full Text PDF

The storage of renewable energy through the conversion of CO to CO provides a viable solution for the intermittent nature of these energy sources. The immobilization of rhenium(I) tricarbonyl molecular complexes is presented through the reductive coupling of bis(diazonium) aryl substituents. The heterogenized complex was characterized through ultra-visible, attenuated total reflectance, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy to probe the electronic structure of the immobilized complex.

View Article and Find Full Text PDF

Calixarene-coated gold nanorods as robust photothermal agents.

Nanoscale

October 2024

Laboratoire de Chimie Organique, Université Libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.

Gold nanorods (AuNRs) hold considerable promise for their use in biomedical applications, notably in the context of photothermal therapy (PTT). Yet, their anisotropic nature presents a notable hurdle. Under laser irradiation, these structures are prone to deformation, leading to changes in their optical and photothermal properties over time.

View Article and Find Full Text PDF

Electrochemical grafting of organic molecules to metal surfaces has been well-known as an efficient tool enabling tailored modification of surface at the nanoscale. Among many compounds with the ability to undergo the process of electrografting, iodonium salts belong to less frequently used, especially when compared with the most popular diazonium salts. Meanwhile, due to their increased stability, iodonium salts may be used in situations where the use of diazonium salts is constrained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!