Tetrabromobisphenol A (TBBPA) is currently the most widely used brominated flame retardant (BFR). To date, the toxic effects of TBBPA remains poorly understood in aquatic organisms, especially in bivalves. The objective of this experiment was to examine bioaccumulation and multibiomarker responses in the scallop Chlamys farreri exposed to TBBPA under laboratory conditions. The results showed that TBBPA was rapidly accumulated in and then eliminated from the gill and digestive gland of the scallops. TBBPA exposure invoked alterations in the detoxification system and induced oxidant stress and biomacromolecule damages in the gill and digestive gland of C. farreri. Additionally, glutathione-S-transferase (GST) activity, lipid peroxidation (LPO) level, cytochrome b5 (Cyt b5) content, and DNA strand break had good correlations with TBBPA accumulation levels in the gill and digestive gland of C. farreri. Summarizing, these results enabled us to hypothesize several toxic mechanisms of TBBPA and select potential biomarkers for TBBPA pollution monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-4487-6 | DOI Listing |
PLoS One
January 2025
Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Leicester Real World Evidence Unit, Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, LE5 4PW, UK.
Background: People with diabetes are at increased risk of hospitalisation, morbidity, and mortality following SARS-CoV-2 infection. Long-term outcomes for people with diabetes previously hospitalised with COVID-19 are, however, unknown. This study aimed to determine the longer-term physical and mental health effects of COVID-19 in people with and without diabetes.
View Article and Find Full Text PDFAquat Toxicol
January 2025
IHEM Instituto de Histología y Embriología de Mendoza CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina. Electronic address:
This study examines the kinetics of absorption, distribution and accumulation of arsenite (As III) in the freshwater gastropod Pomacea canaliculata using a short-lived tracer (As III). The toxicokinetic model indicate that the gills play a crucial role in the As III uptake, with uptake rates significantly exceeding those of release back into the aquatic environment. The movement of As III from the gills to the hemolymph has low exchange rate.
View Article and Find Full Text PDFGut Microbes
December 2025
Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Invasive bacterial biofilms are implicated in colorectal cancer. However, their prevalence on histologically normal tissues and polyps is not well established, and risk factors of biofilms have not been previously investigated. Here we evaluated potential procedural and demographic risk factors associated with biofilm status using a cross-sectional observational cohort.
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!