ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization.

Spine (Phila Pa 1976)

*Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; and †Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand.

Published: August 2015

Study Design: Investigation of the elastic network in disc annulus and its function.

Objective: To investigate the involvement of the elastic network in the structural interconnectivity of the annulus and to examine its possible mechanical role.

Summary Of Background Data: The lamellae of the disc are now known to consist of bundles of collagen fibers organized into compartments. There is strong interconnectivity between adjacent compartments and between adjacent lamellae, possibly aided by a translamellar bridging network, containing blood vessels. An elastic network exists across the disc annulus and is particularly dense between the lamellae, and forms crossing bridges within the lamellae.

Methods: Blocks of annulus taken from bovine caudal discs were studied in either their unloaded or radially stretched state then fixed and sectioned, and their structure analyzed optically using immunohistology.

Results: An elastic network enclosed the collagen compartments, connecting the compartments with each other and with the elastic network of adjacent lamellae, formed an integrated network across the annulus, linking it together. Stretching experiments demonstrated the mechanical interconnectivities of the elastic fibers and the collagen compartments.

Conclusion: The annulus can be viewed as a modular structure organized into compartments of collagen bundles enclosed by an elastic sheath. The elastic network of these sheaths is interconnected mechanically across the entire annulus. This organization is also seen in the modular structure of tendon and muscle. The results provide a new understanding annulus structure and its interconnectivity, and contribute to fundamental structural information relevant to disc tissue engineering and mechanical modeling.

Level Of Evidence: N/A.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000000943DOI Listing

Publication Analysis

Top Keywords

elastic network
28
elastic
9
network
9
annulus
9
understanding annulus
8
disc annulus
8
organized compartments
8
adjacent lamellae
8
modular structure
8
compartments
5

Similar Publications

As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network.

View Article and Find Full Text PDF

Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.

Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Routing Protocol for Intelligent Unmanned Cluster Network Based on Node Energy Consumption and Mobility Optimization.

Sensors (Basel)

January 2025

State Key Laboratory of Satellite Navigation System and Equipment Technology, The 54th Research Institute, China Electronics Technology Group Corporation (CETC), Shijiazhuang 050081, China.

Intelligent unmanned clusters have played a crucial role in military reconnaissance, disaster rescue, border patrol, and other domains. Nevertheless, due to factors such as multipath propagation, electromagnetic interference, and frequency band congestion in high dynamic scenarios, unmanned cluster networks experience frequent topology changes and severe spectrum limitations, which hinder the provision of connected, elastic and autonomous network support for data interaction among unmanned aerial vehicle (UAV) nodes. To address the conflict between the demand for reliable data transmission and the limited network resources, this paper proposes an AODV routing protocol based on node energy consumption and mobility optimization (AODV-EM) from the perspective of network routing protocols.

View Article and Find Full Text PDF

This study evaluated the effect of oral cavity environmental factors on the friction and wear of materials used in 3D-printed orthodontic devices. Commercial materials GR-10 (Pro3Dure) and NextDent SG (NextDent) were examined, with samples produced using ASIGA UV MAX and Phrozen Shuffle Lite 3D printers. Our tests included measurements of hardness, stiffness, elastic modulus, cyclic loading, scratch resistance, and tribological assessments in oscillatory motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!