HIV-1 Tat protein is a key neuropathological element in HIV associated neurogcognitive disorders (HAND); a type of cognitive syndrome thought to be at least partially mediated by increased levels of brain reactive oxygen species (ROS) and nitric oxide (NO). Methylsulfonylmethane (MSM) is a sulfur-containing compound known to reduce oxidative stress. This study was conducted to determine whether administration of MSM attenuates HIV-1 Tat induced oxidative stress in mouse neuronal cells. MSM treatment significantly decreased neuronal cell NO and ROS secretion. Further, MSM significantly reversed HIV-1 Tat mediated reductions in reduced glutathione (GSH) as well as HIV-1 Tat mediated increases in oxidized glutathione (GSSG). In addition, Tat reduced nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a key nuclear promoter of antioxidant activity, while MSM increased its translocation to the nucleus in the presence of Tat. These results suggest that HIV-1 Tat reduces the resiliency of neuron cells to oxidative stress which can be reversed by MSM. Given the clinical safety of MSM, future preclinical in vivo studies will be required to further confirm these results in effort to validate MSM as a neuroprotectant in patients at risk of, or who are already diagnosed with, HAND.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399096 | PMC |
AIDS Res Hum Retroviruses
December 2024
Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Department of Synthesis and Technology of Drugs, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland.
Many pathogens including viruses enter cells by endocytosis. We identified and evaluated novel endocytosis inhibitors capable of blocking the entry of the HIV-1 Tat protein into neuronal cells and investigated their potential protective properties against Tat-induced neurotoxicity. In this study, the compounds Les-6631 and Les-6633 were synthesized and assessed.
View Article and Find Full Text PDFMol Neurobiol
December 2024
NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
Targeting nonapoptotic cell death offers a promising strategy for overcoming apoptosis resistance in cancer. In this study, we developed Tat-Ram13, a 25-mer peptide that fuses the NOTCH1 intracellular domain fragment RAM13 with a cell-penetrating HIV-1 TAT, for the treatment of T-cell acute lymphoblastic leukemia with aberrant NOTCH1 mutation. Tat-Ram13 significantly downregulated NOTCH1-target genes in T-ALL cell lines.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!