Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400383 | PMC |
http://dx.doi.org/10.7150/ijbs.11241 | DOI Listing |
J Hematol Oncol
January 2025
Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.
Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.
J Colloid Interface Sci
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.
View Article and Find Full Text PDFBMJ Open
January 2025
Institute of Diabetes Research, Helmholtz Munich German Research Center for Environmental Health, Munich, Germany
Introduction: The identification of type 1 diabetes at an early presymptomatic stage has clinical benefits. These include a reduced risk of diabetic ketoacidosis (DKA) at the clinical manifestation of the disease and a significant reduction in clinical symptoms. The European action for the Diagnosis of Early Non-clinical Type 1 diabetes For disease Interception (EDENT1FI) represents a pioneering effort to advance early detection of type 1 diabetes through public health screening.
View Article and Find Full Text PDFDiabetes
January 2025
Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.
The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indian Institute of Technology, Gandhinagar, India.
Background: Diabetes is a modifiable risk factor for Alzheimer's disease, and GLUT4, an insulin-dependent transporter, plays a crucial role in insulin-resistant conditions and, consequently, in diabetes development. The study aimed to investigate the relationship between tau pathology and insulin resistance by quantifying GLUT4 expression and glucose concentration.
Method: Initially, SH-SY5Y cells underwent transfection with either a wild-type tau plasmid or a mutant tau plasmid.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!