The use of dietary flavones is becoming increasingly popular for their prevention of cancers, cardiovascular diseases, and other diseases. Despite many pharmacokinetic studies on flavone mixtures, the position(s) of glucuronidation sites on the flavone skeleton in vivo remain(s) uncertain because of the lack of a convenient method to differentiate the isomers in biological samples. Accordingly, this study aimed to develop a new strategy to identify the position of the mono-O-glucuronide of flavones in vivo and to simultaneously determine the parent agent and its major metabolites responsible for complex pharmacokinetic characteristics. The novel strategy involves accurate mass measurements of flavone glucuronides, their [Co(II) (flavone glucuronide-H) (4,7-diphenyl-1,10-phenanthroline)2](+) complexes generated via the post-column addition of CoBr2 and 4,7-diphenyl-1,10-phenanthroline, and their mass spectrometric fragmentation by UPLC-DAD-Q-TOF and the comparison of retention times with biosynthesized standards of different isomers that were identified by analyzing the shift in UV spectra compared with the spectra of their respective aglycones. We successfully generated a metabolite profiling of flavones in rat plasma after oral administration of a flavone mixture from Dracocephalum moldavica L., which was used here as the model to demonstrate the strategy. Twelve flavone glucuronides, which were glucuronidated derivatives of acacetin, apigenin, luteolin, diosmetin, chrysoeriol and cirsimaritin, were detected and identified. Glucuronidation of the flavone skeleton at the 3'-/7-position was more prevalent, however, luteolin 4'-glucuronide levels exceeded luteolin 7-glucuronide levels. Based on the UDP-glucuronosyltransferase (UGT) metabolism profiling of flavones in rat plasma, six main compounds (tilianin, acacetin 7-glucuronide, apigenin 7-glucuronide, luteolin 3'-glucuronide, acacetin, and apigenin) were selected as pharmacokinetic markers. Pharmacokinetic results indicated that their maximal concentrations in blood were obtained within 0.4h, except for the concentration of luteolin 3'-glucronide (approximately 9h). Rat exposure was practically non-linear under the studied dosages (200 to 400mg/kg).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2015.03.069DOI Listing

Publication Analysis

Top Keywords

profiling flavones
12
metabolism profiling
8
oral administration
8
flavone
8
administration flavone
8
flavone mixture
8
flavone skeleton
8
flavone glucuronides
8
flavones rat
8
rat plasma
8

Similar Publications

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.

View Article and Find Full Text PDF

Green propolis, particularly from the unique flora of the Brazilian Caatinga biome, has gained significant interest due to its diverse chemical composition and biological activities. This study focuses on the chemical characterization and antimicrobial evaluation of Caatinga green propolis. Twelve compounds were isolated through different chromatographic techniques, including flavanones (naringenin, 7--methyleriodictyol, sakuranetin), flavones (hispidulin, cirsimaritin), flavonols (quercetin, quercetin-3-methyl ether, kaempferol, 6-methoxykaempferol, viscosine, penduletin), and one chalcone (kukulkanin B).

View Article and Find Full Text PDF

Changes in Growth and Metabolic Profile of Georgi in Response to Sodium Chloride.

Biology (Basel)

December 2024

Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.

Georgi is a valuable medicinal plant of the family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass.

View Article and Find Full Text PDF

Introduction: Dangshen (DS) has been used for hundreds of years as a traditional Chinese medicine. It has a wide range of biological activities. Flavonoids are one of the important bioactive components with strong free radical scavenging and antioxidant capacity in DS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!