Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

J Microbiol Methods

Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul, Republic of Korea. Electronic address:

Published: June 2015

ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2015.04.004DOI Listing

Publication Analysis

Top Keywords

activated sludge
28
atp bioluminescence
12
silica nanoparticle
12
nanoparticle toxicity
12
toxicity activated
12
silica nanoparticles
12
bioluminescence assay
8
sludge atp
8
atp measurement
8
synthetic medium
8

Similar Publications

A Review on Biohazards Removal in Ethiopia: Efficacy of Existing Treatment Systems and Challenges.

Environ Health Insights

January 2025

Department of Environmental Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.

Background: Wastewater treatment is crucial to protecting public health and the environment by removing Biohazards. In Ethiopia, however, significant research gaps limit progress, especially regarding the efficiency of Biohazard removal in existing treatment facilities. This review evaluates the effectiveness of current treatment methods for Biohazard removal, highlights key challenges, and offers recommendations.

View Article and Find Full Text PDF

In October and December 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected from two wastewater samples in Poland during routine environmental surveillance. The first isolate was characterised and matched previous cVDPV2 isolates detected in Spain in September, as well as in Germany, Finland, and the United Kingdom in November and December 2024. In response to the event, active surveillance for acute flaccid paralysis (AFP) has been strengthened, and the frequency of environmental sample collection has been increased.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!