Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int  = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int  = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566921PMC
http://dx.doi.org/10.1002/ijc.29570DOI Listing

Publication Analysis

Top Keywords

epistasis analysis
12
terf1 afap1l2
12
melanoma risk
12
analysis
8
afap1l2 loci
8
associated melanoma
8
pathway analysis
8
loci pmeta-int
8
melanoma
6
integrated pathway
4

Similar Publications

GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).

Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .

View Article and Find Full Text PDF

Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.

View Article and Find Full Text PDF

GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries.

Database (Oxford)

December 2024

The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Originally developed to meet the challenges of genomic data deluge, GeniePool emerged as a pioneering platform, enabling efficient storage, accessibility, and analysis of vast genomic datasets, enabled due to its data lake architecture. Building on this foundation, GeniePool 2.0 advances genomic analysis through the integration of cutting-edge variant databases, such as CHM13-T2T, AlphaMissense, and gnomAD V4, coupled with the capability for variant co-occurrence queries.

View Article and Find Full Text PDF

We recently reanalyzed 20 combinatorial mutagenesis datasets using a novel reference-free analysis (RFA) method and showed that high-order epistasis contributes negligibly to protein sequence-function relationships in every case. Dupic, Phillips, and Desai (DPD) commented on a preprint of our work. In our published paper, we addressed all the major issues they raised, but we respond directly to them here.

View Article and Find Full Text PDF

Genome-wide epistasis analysis reveals significant epistatic signals associated with Parkinson's disease risk.

Brain

December 2024

Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia 30100, Spain.

Article Synopsis
  • Researchers have advanced understanding of Parkinson's disease genetics through genome-wide association studies (GWAS) but have found that many genetic factors still contribute to its heritability, potentially due to interactions between variants (epistasis).
  • A new screening method, VARI3, was developed to investigate these interactions using data from numerous cohorts, successfully identifying notable variant interactions in genes like SNCA, MAPT, and WNT3.
  • The study demonstrated that these epistatic signals were present across different ethnic backgrounds, including European and Native American ancestries, and linked to important biological functions related to Parkinson's disease risk.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!