Couple relationship education (RE) usually is conceived of as relationship enhancement for currently satisfied couples, with a goal of helping couples sustain satisfaction. However, RE also might be useful as a brief, accessible intervention for couples with low satisfaction. Two studies were conducted that tested whether couples with low relationship satisfaction show meaningful gains after RE. Study 1 was a three-condition randomized controlled trial in which 182 couples were randomly assigned to RELATE with Couple CARE (RCC), a flexible delivery education program for couples, or one of two control conditions. Couples with initially low satisfaction receiving RCC showed a moderate increase in relationship satisfaction (d=0.50) relative to the control. In contrast, couples initially high in satisfaction showed little change and there was no difference between RCC and the control conditions. Study 2 was an uncontrolled trial of the Couple Coping Enhancement Training (CCET) administered to 119 couples. Couples receiving CCET that had initially low satisfaction showed a moderate increase in satisfaction (g=.44), whereas initially highly satisfied couples showed no change. Brief relationship education can assist somewhat distressed couples to enhance satisfaction, and has potential as a cost-effective way of enhancing the reach of couple interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.beth.2015.02.001DOI Listing

Publication Analysis

Top Keywords

couples
13
relationship education
12
low satisfaction
12
satisfaction
9
couple relationship
8
uncontrolled trial
8
satisfied couples
8
couples low
8
relationship satisfaction
8
control conditions
8

Similar Publications

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Viridium: A Stable Radical and Its π-Dimerization.

J Am Chem Soc

January 2025

Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.

The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.

View Article and Find Full Text PDF

Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Ultrahigh-Selectivity Photocatalytic Upgrading of Bio-Aldehydes/Diols to Monoalcohols Via In Situ Circumventing Coupling Co-Products Over Janus Single-Atom Pd/TiO.

Small Methods

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.

Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!