Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402969 | PMC |
http://dx.doi.org/10.1038/srep09784 | DOI Listing |
Front Microbiol
December 2024
Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.
Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in genomes deposited in public databases.
View Article and Find Full Text PDFVirus Evol
December 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
Wild birds are important hosts of influenza A viruses (IAVs) and play an important role in their ecology. The emergence of the A/goose/Guangdong/1/1996 H5N1 (Gs/GD) lineage marked a shift in IAV ecology, leading to recurrent outbreaks and mortality in wild birds from 2002 onwards. This lineage has evolved and diversified over time, with a recent important derivative being the 2.
View Article and Find Full Text PDFVirus Evol
November 2024
Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway.
Over a decade since its discovery, piscine myocarditis virus (PMCV) remains a significant pathogen in Atlantic salmon aquaculture. Despite this significant impact, the genomic landscape, evolutionary dynamics, and virulence factors of PMCV are poorly understood. This study enhances the existing PMCV sequence dataset by adding 34 genome sequences and 202 new ORF3 sequences from clinical cardiomyopathy syndrome (CMS) cases in Norwegian aquaculture.
View Article and Find Full Text PDFIsland ecosystems have emerged as vital model systems for evolutionary and speciation studies due to their unique environmental conditions and biodiversity. This study investigates the population divergence, hybridization dynamics, and evolutionary history of hybridizing golden-backed and red-backed flameback woodpeckers on the island of Sri Lanka, providing insights into speciation processes within an island biogeographic context. Utilizing genomic analysis based on next-generation sequencing, we revealed that the hybrid zone on this island is a complex three-way hybrid zone involving three genetically distinct populations: two cryptic populations of golden-backed in the north and one island-endemic red-backed population of in the south of Sri Lanka.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, NO. 28 Qiaozhong Middle Rd, Liwan District, Guangzhou, China. Electronic address:
Objectives: The detection rate of vancomycin-resistant Enterococcus faecium (VREfm) displayed a dramatically increase in Guangdong, China from 2021 to 2023, for which the molecular epidemiology and genomic characteristics remain largely unexplored. In this study, we investigated the genetic features and epidemiology of VREfm isolates in Guangdong.
Methods: A total of 54 Guangdong VREfm isolates were collected from three tertiary hospitals in Guangdong.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!