A crosslinker was designed and synthesized as a molecular tool for potential use in probing the intracellular trafficking pathways of steroids. The design was guided by computational modeling based upon a model for the transfer of cholesterol between two proteins, NPC1 and NPC2. These proteins play critical roles in the transport of low-density lipoprotein-derived cholesterol from the lumen of lysosomes to other subcellular compartments. Two modified cholesterol residues were covalently joined by a tether based on molecular modeling of the transient interaction of NPC1 and NPC2 during the transfer of cholesterol from the binding site of one of these proteins to the other. With two cholesterol molecules appropriately connected, we hypothesize that the cholesterol binding sites of both proteins will be simultaneously occupied in a manner that will stabilize the protein-protein interaction to permit detailed structural analysis of the resulting complex. A photoaffinity label has also been introduced into one of the cholesterol cores to permit covalent attachment of one of the units into its respective protein-binding pocket. The basic design of these crosslinkers should render them useful for examining interactions of the NPC1/NPC2 pair as well as other sterol transport proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461494 | PMC |
http://dx.doi.org/10.1016/j.bmc.2015.03.053 | DOI Listing |
PLoS Pathog
January 2025
Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America.
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Vasopressin (VP) activates protein kinase A (PKA), resulting in phosphorylation events and membrane accumulation of aquaporin-2 (AQP2). Epidermal growth factor receptor (EGFR) inhibition with erlotinib also induces AQP2 membrane trafficking with a phosphorylation pattern similar to VP, but without increasing PKA activity. Here, we identify the ribosomal s6 kinase (RSK) as a major mediator phosphorylating AQP2 in this novel, erlotinib-induced pathway.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. Additionally, 15 healthy, non-obese individuals who did not undergo surgery served as controls and were studied once.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA.
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!