Introduction: Mesenchymal progenitor cells interact with immune cells and modulate inflammatory responses. The cellular characteristics required for this modulation are under fervent investigation. Upon interaction with macrophage cells, they can contribute to or suppress an inflammatory response. Current studies have focused on mesenchymal progenitors derived from bone marrow, adipose, and placenta. However, the arterial wall contains many mesenchymal progenitor cells, which during vascular disease progression have the potential to interact with macrophage cells. To examine the consequence of vascular-tissue progenitor cell-macrophage cell interactions in an inflammatory environment, we used a recently established mesenchymal progenitor cell line derived from the mouse aorta.
Methods: Mouse bone marrow-derived macrophage (MΦ) cells and mouse aorta-derived mesenchymal progenitor (mAo) cells were cultured alone or co-cultured directly and indirectly. Cells were treated with oxidized low-density lipoprotein (ox-LDL) or exposed to the inflammatory mediators lipopolysaccharide (LPS) and interferon-gamma (IFNγ) or both. A Toll-like receptor-4 (TLR4)-deficient macrophage cell line was used to determine the role of the mAo cells. To monitor inflammation, nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα) secretions were measured.
Results: Mesenchymal progenitor cells isolated from aorta and cloned by high proliferative capacity (mAo) can differentiate into multiple mesenchymal lineages and are positive for several commonly used mouse mesenchymal stem cell markers (that is, CD29, CD44, CD105, CD106, and Sca-1) but are negative for CD73 and ecto-5'-nucleotidase. In co-culture with MΦ cells, they increase MΦ oxidized-LDL uptake by 52.2%. In an inflammatory environment, they synergistically and additively contribute to local production of both NO and IL-6. After exposure to ox-LDL, the inflammatory response of MΦ cells to LPS and LPS/IFNγ is muted. However, when lipid-laden MΦ cells are co-cultured with mAo cell progenitors, the muted response is recovered and the contribution by the mAo cell progenitor is dependent upon cell contact.
Conclusions: The resident mesenchymal progenitor cell is a potential contributor to vascular inflammation when in contact with inflamed and lipid-laden MΦ cells. This interaction represents an additional target in vascular disease treatment. The potential for resident cells to contribute to the local immune response should be considered when designing therapeutics targeting inflammatory vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414009 | PMC |
http://dx.doi.org/10.1186/s13287-015-0071-8 | DOI Listing |
Brief Bioinform
November 2024
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114.
Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.
View Article and Find Full Text PDFLife Med
December 2024
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China.
The heterogeneity of ovarian mesenchymal/stromal cells has just been revealed in both mice and humans. However, it remains unclear about the cellular development trace and the intercellular communication network in the whole life of the ovary. In the study, we integrated ours and published single-cell RNA sequencing data from E11.
View Article and Find Full Text PDFPLoS Genet
January 2025
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!