A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IL-25 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma model. | LitMetric

Background: Th2-promoting cytokine IL-25 might contribute to bronchial mucosal vascular remodelling in asthma through its receptor expressed by vascular endothelial and vascular smooth muscle cells.

Methods: By utilising a newly established chronic asthma murine model induced by direct exposure of the airways to IL-25 alone, we examined effects of IL-25 on angiogenesis, vascular remodelling and expression of angiogenic factors, compared changes with those in a "classical" ovalbumin (OVA)-induced murine asthma model. IL-25 and OVA were intranasally instilled into the airways of BALB/c mice for up to 55 days. Airways vessels and angiogenic factors, including Von Willebrand Factor (vWF), amphiregulin, angiogenin, endothelin-1, transcription factor ERG, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor (IGF-1) and vascular endothelial growth factor (VEGF) in lung sections, homogenates and BAL fluid were detected and quantified by immunostaining or enzyme linked immunosorbent assay (ELISA). An in house assay was also utilised to compare the effects of IL-25 and other Th2-cytokines on angiogenesis by human vascular endothelial cells.

Results: Repetitive intranasal challenge with IL-25 alone or OVA alone in OVA-presensitised animals significantly increased peribronchial vWF (+) vessels in the murine airways, which was associated with remarkably elevated expression of amphiregulin, angiogenin, endothelin-1, bFGF, EGF, IGF-1, VEGF and ERG. IL-25, but not Th-2-cytokines induced human angiogenesis in vitro.

Conclusions: The data suggest that chronic exposure of murine airways to IL-25 alone is able to reproduce a local angiogenic milieu. Thus, blocking IL-25 may attenuate vascular remodelling and improve outcomes in asthma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390095PMC
http://dx.doi.org/10.1186/s12931-015-0197-3DOI Listing

Publication Analysis

Top Keywords

growth factor
16
angiogenic factors
12
vascular remodelling
12
vascular endothelial
12
il-25
10
murine asthma
8
asthma model
8
airways il-25
8
effects il-25
8
il-25 ova
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!