Background: Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the β-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity.
Results: H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8.
Conclusions: We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415288 | PMC |
http://dx.doi.org/10.1186/s12934-015-0227-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!