In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell "powerhouse" prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysis model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create "minimal cells" or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374363 | PMC |
http://dx.doi.org/10.1186/s12934-015-0219-3 | DOI Listing |
Mol Cancer
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Front Artif Intell
January 2025
School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China.
Traditional Chinese medicine (TCM) has long utilized tongue diagnosis as a crucial method for assessing internal visceral condition. This study aims to modernize this ancient practice by developing an automated system for analyzing tongue images in relation to the five organs, corresponding to the heart, liver, spleen, lung, and kidney-collectively known as the "five viscera" in TCM. We propose a novel tongue image partitioning algorithm that divides the tongue into four regions associated with these specific organs, according to TCM principles.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
LongHua Hospital Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China.
Objective: To systematically evaluate the effectiveness of non-pharmacological interventions (NPIs), including electroacupuncture, exercise, diet, and lifestyle changes, in reducing androgen levels in women with polycystic ovary syndrome (PCOS) through a systematic review and network meta-analysis.
Methods: Comprehensive searches were conducted in PubMed, Embase, Cochrane Library, Web of Science, CNKI, and Wanfang up to June 2024. Randomized controlled trials (RCTs) comparing NPIs with other NPIs or placebo treatments in adult women with PCOS were included.
Anal Chim Acta
February 2025
Department of Archaeology and Anthropology, School of Humanities, University of Chinese Academy of Sciences, 100049, Beijing, China. Electronic address:
Background: Pottery lipid residue analysis has been extensively practiced worldwide as an important part of archaeometry studies, but in some cases, the complexity of archaeological residue cannot be fully revealed by one-dimensional gas chromatography (1D GC) separation. Although the development of comprehensive two-dimensional gas chromatography (GCxGC) has offered another way to achieve better separation and higher resolution, GCxGC separation has rarely been applied to pottery residue analysis. Clearly, GCxGC separation needs to be explored to examine and scrutinize the complexity of pottery lipid residue profile as well as rapid data treatment workflow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!