Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

Int J Pharm

Department of General Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China.

Published: July 2015

Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2015.04.028DOI Listing

Publication Analysis

Top Keywords

anticancer drug
8
cancer therapeutics
8
folate-decorated anticancer
4
drug
4
drug magnetic
4
magnetic nanoparticles
4
nanoparticles encapsulated
4
encapsulated polymeric
4
polymeric carrier
4
carrier liver
4

Similar Publications

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.

View Article and Find Full Text PDF

Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition.

ACS Biomater Sci Eng

January 2025

School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.

View Article and Find Full Text PDF

Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs.

Expert Opin Drug Discov

January 2025

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.

Introduction: Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cell-cell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and well-coordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancer-associated glycans, which impact glycan-dependent biological roles.

View Article and Find Full Text PDF

Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!