A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes. | LitMetric

Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes.

Biochem Biophys Res Commun

Department of Life-Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan. Electronic address:

Published: June 2015

CHRNA1 encodes the α subunit of nicotinic acetylcholine receptors (nAChRs) and is expressed at the neuromuscular junction. Moreover, it is one of the causative genes of Congenital Myasthenic Syndromes (CMS). CHRNA1 undergoes alternative splicing to produce two splice variants: P3A(-), without exon P3A, and P3A(+), with the exon P3A. Only P3A(-) forms functional nAChR. Aberrant alternative splicing caused by intronic or exonic point mutations in patients leads to an extraordinary increase in P3A(+) and a concomitant decrease in P3A(-). Consequently this resulted in a shortage of functional receptors. Aiming to restore the imbalance between the two splice products, antisense oligonucleotides (AONs) were employed to induce exon P3A skipping. Three AON sequences were designed to sterically block the putative binding sequences for splicing factors necessary for exon recognition. Herein, we show that AON complementary to the 5' splice site of the exon was the most effective at exon skipping of the minigene with causative mutations, as well as endogenous wild-type CHRNA1. We conclude that single administration of the AON against the 5' splice site is a promising therapeutic approach for patients based on the dose-dependent effect of the AON and the additive effect of combined AONs. This conclusion is favorable to patients with inherited diseases of uncertain etiology that arise from aberrant splicing leading to a subsequent loss of functional translation products because our findings encourage the option of AON treatment as a therapeutic for these prospectively identified diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.04.035DOI Listing

Publication Analysis

Top Keywords

exon p3a
12
exon skipping
8
congenital myasthenic
8
myasthenic syndromes
8
alternative splicing
8
splice site
8
exon
7
aon
5
antisense oligonucleotide-mediated
4
oligonucleotide-mediated exon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!