The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2015.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!