Background: Endothelial or epithelial cellular branching is vital in development and cancer progression; however, the molecular mechanisms of these processes are not clear. In Drosophila, terminal cell at the end of some tracheal tube ramifies numerous fine branches on the internal organs to supply oxygen. To discover more genes involved in terminal branching, we searched for mutants with very few terminal branches using the Kiss enhancer-trap line collection.
Results: In this analysis, we identified cropped (crp), encoding the Drosophila homolog of the transcription activator protein AP-4. Overexpressing the wild-type crp gene or a mutant that lacks the DNA-binding region in either the tracheal tissues or terminal cells led to a loss-of-function phenotype, implying that crp can affect terminal branching. Unexpectedly, the ectopic expression of cropped also led to enlarged organs, and cell-counting experiments on the salivary glands suggest that elevated levels of AP-4 increase cell size and organ size. Like its mammalian counterpart, cropped is controlled by dMyc, as ectopic expression of dMyc in terminal cells increased cellular branching and the Cropped protein levels in vivo.
Conclusions: We find that the branching morphogenesis of terminal cells of the tracheal tubes in Drosophila requires the dMyc-dependent activation of Cropped/AP-4 protein to increase the cell growth of terminal cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430030 | PMC |
http://dx.doi.org/10.1186/s12861-015-0069-6 | DOI Listing |
To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.
View Article and Find Full Text PDFUnlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFThere are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation.
View Article and Find Full Text PDFInjured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.
View Article and Find Full Text PDFStaphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments do not exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!