Compounds can activate human ether-à-go-go-related gene 1 (hERG1) channels by several different mechanisms, including a slowing of deactivation, an increase in single channel open probability, or a reduction in C-type inactivation. The first hERG1 activator to be discovered, RPR260243 ((3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid) (RPR) induces a pronounced, voltage-dependent slowing of hERG1 deactivation. The putative binding site for RPR, previously mapped to a hydrophobic pocket located between two adjacent subunits, is fully conserved in the closely related rat ether-à-go-go-related gene 2 (rERG2), yet these channels are relatively insensitive to RPR. Here, we use site-directed mutagenesis and heterologous expression of channels in Xenopus oocytes to characterize the structural basis for the differential sensitivity of hERG1 and rERG2 channels to RPR. Analysis of hERG1-rERG2 chimeric channels indicated that the structural determinant of channel sensitivity to RPR was located within the cytoplasmic C-terminus. Analysis of a panel of mutant hERG1 and rERG2 channels further revealed that seven residues, five in the C-linker and two in the adjacent region of the cyclic nucleotide-binding homology domain, can fully account for the differential sensitivity of hERG1 and rERG2 channels to RPR. These findings provide further evidence that the C-linker is a key structural component of slow deactivation in ether-à-go-go-related gene channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468633 | PMC |
http://dx.doi.org/10.1124/mol.115.098384 | DOI Listing |
Mol Pharmacol
July 2015
Nora Eccles Harrison Cardiovascular Research and Training Institute (A.G., M.C.S.) and Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah
Mol Pharmacol
May 2006
Dipartimento di Biotecnologie e Bioscienze Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
The ether-à-go-go-related gene (erg) K+ channels are known to be crucial for life in Caenorhabditis elegans (mating), Drosophila melanogaster (seizure), and humans (LQT syndrome). The erg genes known to date (erg1, erg2, and erg3) are highly expressed in various areas of the rat and mouse central nervous system (CNS), and ERG channel blockers alter firing accommodation. To assign physiological roles to each isoform, it is necessary to design pharmacological strategies to distinguish individual currents.
View Article and Find Full Text PDFJ Biol Chem
April 2002
Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network and Department of Physiology, University of Toronto, Toronto, Ontario M5T 2S8, Canada.
The human "ether-a-go-go"-related gene (HERG) K(+) channel, and its homologues are present in heart, neuronal tissue, some cancer cells, and the MLS-9 rat microglia cell line (Zhou, W., Cayabyab, F. S.
View Article and Find Full Text PDFJ Physiol
July 1999
Abteilung fur angewandte Physiologie, Physiologisches Institut, Universitats-Krankenhaus Eppendorf, Universitat Hamburg, D-20246 Hamburg, Germany.
1. The ether-à-go-go-related gene (erg)-like K+ current in rat lactotrophs from primary culture was characterized and compared with that in clonal rat pituitary cells (GH3/B6). The class III antiarrhythmic E-4031 known to block specifically erg K+ channels was used to isolate the erg-like current as the E-4031-sensitive current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!