A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production. | LitMetric

Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production.

Metab Eng

Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; QB3 Institute, University of California-Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608, United States; Synthetic Biology Engineering Research Center, University of California, Berkeley, CA 94720, United States; Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA 94720, United States. Electronic address:

Published: July 2015

Here we report recombinant expression and activity of several type I fatty acid synthases that can function in parallel with the native Escherichia coli fatty acid synthase. Corynebacterium glutamicum FAS1A was the most active in E. coli and this fatty acid synthase was leveraged to produce oleochemicals including fatty alcohols and methyl ketones. Coexpression of FAS1A with the ACP/CoA-reductase Maqu2220 from Marinobacter aquaeolei shifted the chain length distribution of fatty alcohols produced. Coexpression of FAS1A with FadM, FadB, and an acyl-CoA-oxidase from Micrococcus luteus resulted in the production of methyl ketones, although at a lower level than cells using the native FAS. This work, to our knowledge, is the first example of in vivo function of a heterologous fatty acid synthase in E. coli. Using FAS1 enzymes for oleochemical production have several potential advantages, and further optimization of this system could lead to strains with more efficient conversion to desired products. Finally, functional expression of these large enzyme complexes in E. coli will enable their study without culturing the native organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2015.04.003DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
acid synthase
12
oleochemical production
8
coli fatty
8
fatty alcohols
8
methyl ketones
8
coexpression fas1a
8
fatty
7
acid
5
coli
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!