Cones are the primary photoreceptor (PR) cells responsible for vision in humans. They are metabolically highly active requiring phosphoinositide 3-kinase (PI3K) activity for long-term survival. One of the downstream targets of PI3K is the kinase mammalian target of rapamycin (mTOR), which is a key regulator of cell metabolism and growth, integrating nutrient availability and growth factor signals. Both PI3K and mTOR are part of the insulin/mTOR signaling pathway, however if mTOR is required for long-term PR survival remains unknown. This is of particular interest since deregulation of this pathway in diabetes results in reduced PR function before the onset of any clinical signs of diabetic retinopathy. mTOR is found in two distinct complexes (mTORC1 & mTORC2) that are characterized by their unique accessory proteins RAPTOR and RICTOR respectively. mTORC1 regulates mainly cell metabolism in response to nutrient availability and growth factor signals, while mTORC2 regulates pro-survival mechanisms in response to growth factors. Here we analyze the effect on cones of loss of mTORC1, mTORC2 and simultaneous loss of mTORC1 & mTORC2. Interestingly, neither loss of mTORC1 nor mTORC2 affects cone function or survival at one year of age. However, outer and inner segment morphology is affected upon loss of either complex. In contrast, concurrent loss of mTORC1 and mTORC2 leads to a reduction in cone function without affecting cone viability. The data indicates that PI3K mediated pro-survival signals diverge upstream of both mTOR complexes in cones, suggesting that they are independent of mTOR activity. Furthermore, the data may help explain why PR function is reduced in diabetes, which can lead to deregulation of both mTOR complexes simultaneously. Finally, although mTOR is a key regulator of cell metabolism, and PRs are metabolically highly active, the data suggests that the role of mTOR in regulating the metabolic transcriptome in healthy cones is minimal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446177PMC
http://dx.doi.org/10.1016/j.exer.2015.04.006DOI Listing

Publication Analysis

Top Keywords

mtorc1 mtorc2
20
loss mtorc1
16
cone function
12
cell metabolism
12
mtor
9
function cone
8
metabolically highly
8
highly active
8
long-term survival
8
mtor key
8

Similar Publications

Background: Alzheimer's disease (AD) is a common neurodegenerative disorder that results in the accumulation of amyloid-beta, neurofibrillary tangles, and progressive cognitive decline. Despite extensive research into the pathophysiology of AD and potential treatments, a definitive cure remains elusive. Appropriate in vitro cell models are crucial for understanding pathophysiology and drug screening for AD.

View Article and Find Full Text PDF

Regulatory T cells in CIDP and the inhibitory effect of rapamycin on them.

Hum Immunol

December 2024

From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China. Electronic address:

We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated.

View Article and Find Full Text PDF

SHIP-1 regulates the differentiation and function of Tregs via inhibiting mTORC1 activity.

Cell Mol Life Sci

December 2024

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Cell metabolism is crucial for orchestrating the differentiation and function of regulatory T cells (Tregs). However, the underlying mechanism that coordinates cell metabolism to regulate Treg activity is not completely understood. As a pivotal molecule in lipid metabolism, the role of SHIP-1 in Tregs remains unknown.

View Article and Find Full Text PDF

Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy.

Cell Death Discov

December 2024

Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice.

View Article and Find Full Text PDF

The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!