Background: A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level.

Results: Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration.

Conclusions: Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410476PMC
http://dx.doi.org/10.1186/s13059-015-0593-5DOI Listing

Publication Analysis

Top Keywords

regulatory networks
16
alcohol self-administration
12
alcohol
9
assembly interrogation
8
alcohol dependence
8
dependent non-dependent
8
non-dependent alcohol
8
protracted abstinence
8
master regulator
8
glucocorticoid receptor
8

Similar Publications

Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition.

Cancer Cell Int

December 2024

Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.

Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer.

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Patients with multiple sclerosis (MS) face a heightened risk of developing chronic obstructive pulmonary disease (COPD). Despite this widely reported association, the pathogenic contributors and processes that may favor the development of COPD in MS patients have yet to be identified. Recent studies have suggested peripheral blood leukocytes as a potential link between COPD and autoimmune disorders.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Insight into dysregulated VEGF-related genes in diabetic retinopathy through bioinformatic analyses.

Naunyn Schmiedebergs Arch Pharmacol

December 2024

Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China.

Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus. VEGF plays a pivotal role in the pathogenesis of DR. To characterize the VEGF-related genes in DR patients, the RNAseq dataset of DR and normal control were downloaded from the GEO database and analyzed using R package limma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!